English

The Height of a Cone Increases by K%, Its Semi-vertical Angle Remaining the Same. What is the Approximate Percentage Increase (I) in Total Surface Area, - Mathematics

Advertisements
Advertisements

Question

The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?

Sum

Solution

Let h be the height, y be the surface area, V be the volume,l be the slant height and r be the radius of the cone.

\[\text { Let } ∆ \text { h be the change in the height }, ∆ \text { r be the change in the radius of base and } ∆ l \text { be the change in the slant height }. \]

\[\text { Semi - vertical angle ramaining the same } . \]

\[ \therefore \frac{∆ h}{h} = \frac{∆ r}{r} = \frac{∆ l}{l}\]

\[\text { Also }, \frac{∆ h}{h} \times 100 = k\]

\[\text { Then }, \frac{∆ h}{h} \times 100 = \frac{∆ r}{r} \times 100 = \frac{∆ l}{l} \times 100 = k . . . \left( 1 \right)\]

\[\left( i \right) \text { Total surface area of the cone, } T = \pi rl + \pi r^2 \]

\[\text { Differentiating both sides w . r . t . r, we get }\]

\[\frac{dT}{dr} = \pi l + \pi r\frac{dl}{dr} + 2\pi r\]

\[ \Rightarrow \frac{dT}{dr} = \pi l + \pi r\frac{l}{r} + 2\pi r \left[ \text { From } \left( 1 \right), \frac{dl}{dr} = \frac{∆ l}{∆ r} = \frac{l}{r} \right] \]

\[ \Rightarrow \frac{dT}{dr} = \pi l + \pi l + 2\pi r \]

\[ \Rightarrow \frac{dT}{dr} = 2\pi\left( l + r \right)\]

\[ \therefore ∆ T = \frac{dT}{dr} ∆ r = 2\pi\left( l + r \right) \times \frac{kr}{100} = \frac{2kr\pi\left( l + r \right)}{100}\]

\[ \therefore \frac{∆ T}{T} \times 100 = \frac{\left( \frac{2kr\pi\left( l + r \right)}{100} \right)}{2\pi r\left( l + r \right)} \times 100 = 2k  \] % 

\[\text { Hence, the percentage increase in total surface area of cone is } 2k  . \] %

\[\left( ii \right) \text { Volume of cone, V } = \frac{1}{3}\pi r^2 h\]

\[\text { Differentiating both sides w . r . t . h, we get }\]

\[\frac{dV}{dh} = \frac{1}{3}\pi r^2 + \frac{1}{3}\pi h2r\frac{dr}{dh}\]

\[ \Rightarrow \frac{dV}{dh} = \frac{1}{3}\pi r^2 + \frac{1}{3}\pi h2r\frac{r}{h} \left[ \text { From} \left( 1 \right), \frac{dr}{dh} = \frac{∆ r}{∆ h} = \frac{r}{h} \right]\]

\[ \Rightarrow \frac{dV}{dh} = \frac{1}{3}\pi r^2 + \frac{2}{3}\pi r^2 \]

\[ \Rightarrow \frac{dV}{dh} = \pi r^2 \]

\[ \therefore ∆ V = \frac{dV}{dh}dh = \pi r^2 \times \frac{kh}{100} = \frac{k\pi r^2 h}{100}\]

\[ \therefore \frac{∆ V}{V} \times 100 = \frac{\left( \frac{k\pi r^2 h}{100} \right)}{\frac{1}{3}\pi r^2 h} \times 100 = 3k \]%

\[\text { Hence, the percentage increase in thevolume of thecone is } 3k .\]%

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 7 | Page 9

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


If y = xn  then the ratio of relative errors in y and x is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×