English

Show that the Relative Error in Computing the Volume of a Sphere, Due to an Error in Measuring the Radius, is Approximately Equal to Three Times the Relative Error in the Radius ? - Mathematics

Advertisements
Advertisements

Question

Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?

Sum

Solution

Let x be the radius of the sphere and y be its volume.

\[\text { Let } ∆ x \text { be the error in the radius and ∆ V be the approximate error in the volume } . \]

\[y = \frac{4}{3}\pi x^3 \]

\[ \Rightarrow \frac{dy}{dx} = 4\pi x^2 \]

\[ \Rightarrow ∆ y = dy = \frac{dy}{dx}dx = 4\pi x^2 \times ∆ x\]

\[ \Rightarrow ∆ y = 3 \times \frac{4}{3}\pi x^3 \times \frac{∆ x}{x}\]

\[ \Rightarrow ∆ y = 3 \times y \times \frac{∆ x}{x}\]

\[ \Rightarrow \frac{∆ y}{y} = 3\frac{∆ x}{x}\]

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 8 | Page 9

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


The approximate value of (33)1/5 is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `root(3)(28)`


Find the approximate values of : (3.97)4 


Find the approximate values of : tan–1(0.999)


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate value of (1.999)5.


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×