Advertisements
Advertisements
Question
The approximate value of (33)1/5 is
Options
2.0125
2.1
2.01
none of these
Solution
2.0125
Consider the function y= f (x)=\[x^\frac{1}{5}\] .
\[\text { Let }: \]
\[ x = 32\]
\[ x + ∆ x = 33\]
\[ \Rightarrow ∆ x = 1\]
\[y = \left( x \right)^\frac{1}{5} \]
\[\text { For }x = 32, \]
\[y = 2\]
\[\text { Also }, \frac{dy}{dx} = \frac{1}{5 \left( x \right)^\frac{4}{5}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 32} = \frac{1}{80}\]
\[ \Rightarrow ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{80} \times 1 = 0 . 0125\]
\[ \therefore \left( 33 \right)^\frac{1}{5} = y + ∆ y = 2 . 0125\]
APPEARS IN
RELATED QUESTIONS
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
If loge 4 = 1.3868, then loge 4.01 =
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1(0.999)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.