English

The Approximate Value of (33)1/5 is - Mathematics

Advertisements
Advertisements

Question

The approximate value of (33)1/5 is

Options

  • 2.0125

  • 2.1

  • 2.01

  • none of these

MCQ

Solution

 2.0125
Consider the function y= f (x)=\[x^\frac{1}{5}\] .

\[\text { Let }: \]

\[ x = 32\]

\[ x + ∆ x = 33\]

\[ \Rightarrow ∆ x = 1\]

\[y = \left( x \right)^\frac{1}{5} \]

\[\text { For }x = 32, \]

\[y = 2\]

\[\text { Also }, \frac{dy}{dx} = \frac{1}{5 \left( x \right)^\frac{4}{5}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 32} = \frac{1}{80}\]

\[ \Rightarrow ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{80} \times 1 = 0 . 0125\]

\[ \therefore \left( 33 \right)^\frac{1}{5} = y + ∆ y = 2 . 0125\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.3 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.3 | Q 11 | Page 13

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If loge 4 = 1.3868, then loge 4.01 =


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : tan–1(0.999)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×