English

Using Differential, Find the Approximate Value of the ( 29 ) 1 3 ? - Mathematics

Advertisements
Advertisements

Question

Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?

Sum

Solution

\[\text {Consider the function }y = f\left( x \right) = \left( x \right)^\frac{1}{3} . \]

\[\text{Let }: \]

\[ x = 27 \]

\[x + ∆ x = 29\]

\[\text { Then,} \]

\[ ∆ x = 2\]

\[\text { For } x = 27, \]

\[ y = \left( 27 \right)^\frac{1}{3} = 3\]

\[\text { Let }: \]

\[ dx = ∆ x = 2\]

\[\text { Now }, y = \left( x \right)^\frac{1}{3} \]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{3 \left( x \right)^\frac{2}{3}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 27} = \frac{1}{27}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{27} \times 2 = 0 . 074\]

\[ \Rightarrow ∆ y = 0 . 074\]

\[ \therefore \left( 29 \right)^\frac{1}{3} = y + ∆ y = 3 . 074\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.16 | Page 9

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


The approximate value of (33)1/5 is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : e2.1, given that e2 = 7.389


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×