English

Using Differentials, Find the Approximate Value of the Following up to 3 Places of Decimal `(15)^(1/4)` - Mathematics

Advertisements
Advertisements

Question

Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`

Solution

`(15)^(1/4)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.4 [Page 216]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.4 | Q 1.6 | Page 216

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Using differentials, find the approximate value of each of the following.

`(17/81)^(1/4)`

 


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


If y = xn  then the ratio of relative errors in y and x is


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of : (3.97)4 


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Find the approximate value of (1.999)5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×