English

Using Differential, Find the Approximate Value of the 1 √ 25 . 1 ? - Mathematics

Advertisements
Advertisements

Question

Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?

Sum

Solution

\[\text { Consider the function } y = f\left( x \right) = \frac{1}{\sqrt{x}} . \]

\[\text { Let }: \]

\[ x = 25 \]

\[x + ∆ x = 25 . 1\]

\[\text { Then }, \]

\[ ∆ x = 0 . 1\]

\[\text { For }  x = , \]

\[ y = \frac{1}{\sqrt{25}} = 0 . 2\]

\[\text { Let }: \]

\[ dx = ∆ x = 0 . 1\]

\[\text { Now,} y = \frac{1}{\sqrt{x}}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- 1}{2 \left( x \right)^\frac{3}{2}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 25} = - 0 . 004\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = - 0 . 004 \times 0 . 1 = - 0 . 0004\]

\[ \Rightarrow ∆ y = - 0 . 0004\]

\[ \therefore \frac{1}{\sqrt{25 . 1}} = y + ∆ y = 0 . 1996\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.12 | Page 9

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


If loge 4 = 1.3868, then loge 4.01 =


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : (3.97)4 


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : loge(101), given that loge10 = 2.3026.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×