Advertisements
Advertisements
Question
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Solution
\[\text { Consider the function } y = f\left( x \right) = \frac{1}{\sqrt{x}} . \]
\[\text { Let }: \]
\[ x = 25 \]
\[x + ∆ x = 25 . 1\]
\[\text { Then }, \]
\[ ∆ x = 0 . 1\]
\[\text { For } x = , \]
\[ y = \frac{1}{\sqrt{25}} = 0 . 2\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 1\]
\[\text { Now,} y = \frac{1}{\sqrt{x}}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 1}{2 \left( x \right)^\frac{3}{2}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 25} = - 0 . 004\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = - 0 . 004 \times 0 . 1 = - 0 . 0004\]
\[ \Rightarrow ∆ y = - 0 . 0004\]
\[ \therefore \frac{1}{\sqrt{25 . 1}} = y + ∆ y = 0 . 1996\]
APPEARS IN
RELATED QUESTIONS
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
If loge 4 = 1.3868, then loge 4.01 =
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : (3.97)4
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : loge(101), given that loge10 = 2.3026.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866