English

Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866

Sum

Solution

Let f(x) = sin x  ...(I)

Differentiate w. r. t. x.

f'(x) = cos x

Now, 30° 30' = 30° + 30' = `30^circ + (1/2)^circ`

= `π/6 + (0.0175)/2`

30° 30' = `π/6 + 0.00875`  ...(II)

Let a = `π/6`, h = 0.00875

For x = a = `π/6`, from (I) we get

f(a) = `f(π/6) = sin(π/6) = 1/2` = 0.5  ...(III)

For x = a = `π/6`, from (II) we get

f'(a) = `f^'(π/6) = cos(π/6)` = 0.866  ...(IV)

We have, f(a + h) = f(a) + hf'(a)

`f(π/6 + 0.00875) = f(π/6) + (0.00875).f^'(π/6)`

f(30° 30′) = 0.5 + (0.00875) × (0.866)  ...[From (III) and (IV)]

= 0.5 + 0.0075775

∴ f(30° 30′) = sin (30° 30′) = 0.5076

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Official

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of ` sqrt8.95 `


Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Using differentials, find the approximate value of each of the following.

`(17/81)^(1/4)`

 


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If loge 4 = 1.3868, then loge 4.01 =


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


If y = xn  then the ratio of relative errors in y and x is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : (3.97)4 


Find the approximate values of (4.01)3 


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : e2.1, given that e2 = 7.389


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate value of (1.999)5.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×