Advertisements
Advertisements
Question
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
Solution
\[\text { Let }: \]
\[ x = 5\]
\[ x + ∆ x = 5 . 001\]
\[ \Rightarrow ∆ x = 0 . 001\]
\[f\left( x \right) = x^3 - 7 x^2 + 15\]
\[ \Rightarrow y = f\left( x = 3 \right) = 125 - 175 + 15 = - 35\]
\[\text { Now }, y = f\left( x \right)\]
\[ \Rightarrow \frac{dy}{dx} = 3 x^2 - 14x\]
\[ \therefore dy = ∆ y = \frac{dy}{dx}dx = \left( 3 x^2 - 14x \right) \times 0 . 001 = \left( 75 - 70 \right) \times 0 . 001 = 0 . 005\]
\[ \therefore f\left( 5 . 001 \right) = y + ∆ y = - 35 + 0 . 005 = - 34 . 995\]
APPEARS IN
RELATED QUESTIONS
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
If y = xn then the ratio of relative errors in y and x is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `root(3)(28)`
Find the approximate values of : (3.97)4
Find the approximate values of (4.01)3
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
Using differentials, find the approximate value of `sqrt(0.082)`
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is