Advertisements
Advertisements
Question
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Solution
\[\text { Consider the function } y = f\left( x \right) = \sin x . \]
\[\text { Let }: \]
\[ x = \frac{22}{7} \]
\[x + ∆ x = \frac{22}{14}\]
\[\text { Then,} \]
\[ ∆ x = \frac{- 22}{14}\]
\[\text { For } x = \pi, \]
\[ y = \sin \left( \frac{22}{7} \right) = 0\]
\[\text { Let }: \]
\[ dx = ∆ x = \sin \frac{- 22}{14} = - \sin \left( \frac{\pi}{2} \right) = - 1\]
\[\text { Now }, y = \sin x\]
\[ \Rightarrow \frac{dy}{dx} = \cos x\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{22}{7}} = - 1\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = - 1 \times \left( - 1 \right) = 1\]
\[ \Rightarrow ∆ y = 1\]
\[ \therefore \sin \frac{22}{14} = y + ∆ y = 1\]
APPEARS IN
RELATED QUESTIONS
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : tan–1(0.999)
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866