Advertisements
Advertisements
Question
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Solution
\[\text { Consider the function y } = f\left( x \right) = \sqrt{x} . \]
\[\text { Let }: \]
\[ x = 400 \]
\[x + ∆ x = 401\]
\[\text { Then }, \]
\[ ∆ x = 1\]
\[\text { For } x = 400, \]
\[ y = \sqrt{400} = 20\]
\[\text { Let }: \]
\[ dx = ∆ x = 1\]
\[\text { Now,} y = \sqrt{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 400} = \frac{1}{40}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{40} \times 1 = \frac{1}{40}\]
\[ \Rightarrow ∆ y = \frac{1}{40} = 0 . 025\]
\[ \therefore \sqrt{401} = y + ∆ y = 20 . 025\]
APPEARS IN
RELATED QUESTIONS
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : `root(3)(28)`
Find the approximate values of : (3.97)4
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : 32.01, given that log 3 = 1.0986
Using differentials, find the approximate value of `sqrt(0.082)`
Find the approximate value of (1.999)5.