English

Using Differential, Find the Approximate Value of the √ 401 ? - Mathematics

Advertisements
Advertisements

Question

Using differential, find the approximate value of the \[\sqrt{401}\] ?

Sum

Solution

\[\text { Consider the function y } = f\left( x \right) = \sqrt{x} . \]

\[\text { Let }: \]

\[ x = 400 \]

\[x + ∆ x = 401\]

\[\text { Then }, \]

\[ ∆ x = 1\]

\[\text { For } x = 400, \]

\[ y = \sqrt{400} = 20\]

\[\text { Let }: \]

\[ dx = ∆ x = 1\]

\[\text { Now,} y = \sqrt{x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 400} = \frac{1}{40}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{40} \times 1 = \frac{1}{40}\]

\[ \Rightarrow ∆ y = \frac{1}{40} = 0 . 025\]

\[ \therefore \sqrt{401} = y + ∆ y = 20 . 025\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.04 | Page 9

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate values of : `root(3)(28)`


Find the approximate values of : (3.97)4 


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : 32.01, given that log 3 = 1.0986


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate value of (1.999)5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×