English

Find the approximate values of : e0.995, given that e = 2.7183. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the approximate values of : e0.995, given that e = 2.7183.

Sum

Solution

Let f(x) = ex.

Then f'(x) = `d/dx(e^x) = e^x`

Take a = 1 and h = – 0.005.
Then f(a) = f(1) = e = 2.7183
and f'(a) = f'(1) = e = 2.7183
The formula for approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ e.0995 = f(0.995)
= f(1 – 0.005)
≑ f(1) – (0.005).f'(1)
≑ 2.7183 – 0.005 x 2.7183
≑ 2.7183 – 0.01359
= 2.70471
∴ e0.995 ≑ 2.70471.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Applications of Derivatives - Exercise 2.2 [Page 75]

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The approximate value of (33)1/5 is


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : (3.97)4 


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : e2.1, given that e2 = 7.389


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Find the approximate value of (1.999)5.


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×