English

Find the approximate values of : tan–1 (1.001) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the approximate values of : tan–1 (1.001)

Sum

Solution

Let f(x) = tan–1x

∴ f'(x) = `d/dx(tan^-1x) = (1)/(1 + x^2)`

Take a = 1 and h = 0.001

Then f(a) = f(1) = tan–11 = `pi/(4)`

and f'(a) = f'(1) = `(1)/(1 + 1^2) = (1)/(2)`
The formula for approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ tan–11 (1.001)
= f(1.001)
= f(1 + 0.001)
= f(1) + (0.001).f'(1)

≑ `pi/(4) + (0.001) xx (1)/(2)`

= `pi/(4) + 0.0005`

∴ tan–1 (1.001) ≑ `pi/(4) + 0.0005`.
Remark: the answer can also be given as :
tan–1 (1.001) ≑ f(1) + (0.001).f'(1)

≑ `pi/(4) + (0.001) xx (1)/(2)`

≑ `(3.1416)/(4) + 0.0005`

≑ 0.7854 + 0.0005
= 0.7859.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Applications of Derivatives - Exercise 2.2 [Page 75]

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Using differentials, find the approximate value of each of the following.

`(17/81)^(1/4)`

 


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


The approximate value of (33)1/5 is


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : `root(3)(28)`


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : e2.1, given that e2 = 7.389


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Find the approximate value of (1.999)5.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×