Advertisements
Advertisements
Question
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
Solution
\[\text { Let }: \]
\[ x = \frac{\pi}{2}\]
\[ x + \bigtriangleup x = \frac{22}{14}\]
\[ \Rightarrow dx = \bigtriangleup x = \frac{22}{14} - \frac{\pi}{2} = 0\]
\[\text { Now, y } = \sin x\]
\[ \Rightarrow \frac{dy}{dx} = \cos x\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{2}} = \cos\left( \frac{\pi}{2} \right) = 0\]
\[ \therefore ∆ y = \frac{dy}{dx} ∆ x = 0 \times 0 = 0\]
\[ \Rightarrow \bigtriangleup y = 0\]
Hence, there is no change in the value of y.
APPEARS IN
RELATED QUESTIONS
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
If loge 4 = 1.3868, then loge 4.01 =
The approximate value of (33)1/5 is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e2.1, given that e2 = 7.389
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Using differentials, find the approximate value of `sqrt(0.082)`
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is