Advertisements
Advertisements
प्रश्न
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
उत्तर
\[\text { Let }: \]
\[ x = \frac{\pi}{2}\]
\[ x + \bigtriangleup x = \frac{22}{14}\]
\[ \Rightarrow dx = \bigtriangleup x = \frac{22}{14} - \frac{\pi}{2} = 0\]
\[\text { Now, y } = \sin x\]
\[ \Rightarrow \frac{dy}{dx} = \cos x\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{2}} = \cos\left( \frac{\pi}{2} \right) = 0\]
\[ \therefore ∆ y = \frac{dy}{dx} ∆ x = 0 \times 0 = 0\]
\[ \Rightarrow \bigtriangleup y = 0\]
Hence, there is no change in the value of y.
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e0.995, given that e = 2.7183.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is