मराठी

Find the Approximate Change in the Surface Area of a Cube of Side X Metres Caused by Decreasing the Side by 1% ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?

बेरीज

उत्तर

Let y be the surface area of the cube.

\[y = 6 x^2 \]

\[\text { We have }\]

\[ \frac{\bigtriangleup x}{x} \times 100 = 1\]

\[\text { Now }, \]

\[\frac{dy}{dx} = 12x\]

\[ \Rightarrow \bigtriangleup y = dy = \frac{dy}{dx}dx = 12x \times \frac{x}{100} = 0 . 12 x^2 m^2 \]

\[\text { Hence, approximate change in the surface area of the cube is }0 . 12 x^2 m^2 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 14 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


If y = xn  then the ratio of relative errors in y and x is


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : (3.97)4 


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×