मराठी

While Measuring the Side of an Equilateral Triangle an Error of K % is Made, the Percentage Error in Its Area is - Mathematics

Advertisements
Advertisements

प्रश्न

While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is

पर्याय

  • k %

  • 2k %

  • \[\frac{k}{2}\%\]

  • 3k %

MCQ

उत्तर

2k%
Let x be the side of the triangle and be its area.

\[\frac{∆ x}{x} \times 100 = k\]

\[\text { Also }, y = \frac{\sqrt{3}}{4} x^2 \]

\[ \Rightarrow \frac{dy}{dx} = \frac{\sqrt{3}}{2}x\]

\[ \Rightarrow \frac{∆ y}{y} = \frac{\sqrt{3}x}{2y}dx = \frac{2}{x} \times \frac{kx}{100}\]

\[ \Rightarrow \frac{∆ y}{y} \times 100 = 2k\]

\[\text { Hence, the error in the area of the triangle is } 2k  .\] %

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Differentials, Errors and Approximations - Exercise 14.3 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 14 Differentials, Errors and Approximations
Exercise 14.3 | Q 5 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Using differentials, find the approximate value of each of the following.

`(17/81)^(1/4)`

 


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


If loge 4 = 1.3868, then loge 4.01 =


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The approximate value of (33)1/5 is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : e2.1, given that e2 = 7.389


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×