Advertisements
Advertisements
Question
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
Options
k %
2k %
\[\frac{k}{2}\%\]
3k %
Solution
2k%
Let x be the side of the triangle and y be its area.
\[\frac{∆ x}{x} \times 100 = k\]
\[\text { Also }, y = \frac{\sqrt{3}}{4} x^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sqrt{3}}{2}x\]
\[ \Rightarrow \frac{∆ y}{y} = \frac{\sqrt{3}x}{2y}dx = \frac{2}{x} \times \frac{kx}{100}\]
\[ \Rightarrow \frac{∆ y}{y} \times 100 = 2k\]
\[\text { Hence, the error in the area of the triangle is } 2k .\] %
APPEARS IN
RELATED QUESTIONS
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
If y = xn then the ratio of relative errors in y and x is
The approximate value of (33)1/5 is
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : loge(101), given that loge10 = 2.3026.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.