Advertisements
Advertisements
Question
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Solution
Let f(x) - logex.
Then f'(x) = `(1)/x`
Take a = 100 and h = 1. then
f(a) = f(100)
= loge100
= 2 loge10
= 2 x 2.3026
= 4.6052
f'(a) = f'(100)
= `(1)/(100)`
= 0.01
The formula for a approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ loge101 = f(101)
= f(100 + 1)
≑ f(100) + 1.f'(100)
≑ 4.6052 + 1 x 0.01
= 4.6152
loge(101) ≑ 4.6152.
APPEARS IN
RELATED QUESTIONS
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : (3.97)4
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]