English

Find the approximate values of : (3.97)4 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the approximate values of : (3.97)4 

Sum

Solution

Let f(x) = x4

Then f'(x) = `d/dx(x^4)` = 4x3

Take a = 4 and h = – 0.03.
Then f(a) = f(4) = (4)4 = 256 and
f'(a) = f'(4) = 4(4)3 = 256
The formula for approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ (3.97)4 = f(3.97) = f(4 – 00.03)
≑ f(4) – (0.03)f'(4)
≑ 256 – 0.03 x 256
≑ 256 – 7.68
= 248.32
∴ (3.97)4 ≑  248.32.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Applications of Derivatives - Exercise 2.2 [Page 75]

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If y = xn  then the ratio of relative errors in y and x is


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of : `root(3)(28)`


Find the approximate values of (4.01)3 


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : e2.1, given that e2 = 7.389


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Find the approximate value of (1.999)5.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×