English

Using Differential, Find the Approximate Value of the √ 36 . 6 ? - Mathematics

Advertisements
Advertisements

Question

Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?

Sum

Solution

\[\text { Consider the function  }y = f\left( x \right) = \sqrt{x} . \]

\[\text { Let }: \]

\[ x = 36\]

\[x + ∆ x = 36 . 6\]

\[\text { Then}, \]

\[ ∆ x = 0 . 6\]

\[\text { For } x = 36, \]

\[ y = \sqrt{36} = 6\]

\[\text { Let }: \]

\[ dx = ∆ x = 0 . 6\]

\[\text { Now,} y = \left( x \right)^\frac{1}{2} \]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 36} = \frac{1}{12}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{12} \times 0 . 6 = 0 . 05\]

\[ \Rightarrow ∆ y = 0 . 05\]

\[ \therefore \sqrt{36 . 6} = y + ∆ y = 6 . 05\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.24 | Page 9

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If loge 4 = 1.3868, then loge 4.01 =


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of (4.01)3 


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×