Advertisements
Advertisements
Question
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Solution
\[\text { Consider the function }y = f\left( x \right) = \sqrt{x} . \]
\[\text { Let }: \]
\[ x = 36\]
\[x + ∆ x = 36 . 6\]
\[\text { Then}, \]
\[ ∆ x = 0 . 6\]
\[\text { For } x = 36, \]
\[ y = \sqrt{36} = 6\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 6\]
\[\text { Now,} y = \left( x \right)^\frac{1}{2} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 36} = \frac{1}{12}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{12} \times 0 . 6 = 0 . 05\]
\[ \Rightarrow ∆ y = 0 . 05\]
\[ \therefore \sqrt{36 . 6} = y + ∆ y = 6 . 05\]
APPEARS IN
RELATED QUESTIONS
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If loge 4 = 1.3868, then loge 4.01 =
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of (4.01)3
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.