Advertisements
Advertisements
Question
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Solution
\[\text { Let }: \]
\[ x = 2\]
\[x + ∆ x = 2 . 01\]
\[ \Rightarrow ∆ x = 0 . 01\]
\[f\left( x \right) = 4 x^2 + 5x + 2\]
\[ \Rightarrow f\left( x = 2 \right) = 16 + 10 + 2 = 28\]
\[\text { Now,} y = f\left( x \right)\]
\[ \Rightarrow \frac{dy}{dx} = 8x + 5\]
\[ \therefore dy = ∆ y = \frac{dy}{dx}dx = \left( 8x + 5 \right) \times 0 . 01 = \left( 16 + 5 \right) \times 0 . 01 = 0 . 21\]
\[ \therefore f\left( 2 . 01 \right) = y + ∆ y = 28 . 21\]
APPEARS IN
RELATED QUESTIONS
Find the approximate value of ` sqrt8.95 `
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1(0.999)
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : 32.01, given that log 3 = 1.0986
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is