English

Using Differential, Find the Approximate Value of the 25 1 3 ? - Mathematics

Advertisements
Advertisements

Question

Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?

Sum

Solution

\[\text { Consider the function  }y = f\left( x \right) = \left( x \right)^\frac{1}{3} . \]

\[\text {Let }: \]

\[ x = 27\]

\[ x + ∆ x = 25\]

\[\text { Then,} \]

\[ \bigtriangleup x = - 2\]

\[\text { For } x = 27, \]

\[ y = \left( 27 \right)^\frac{1}{3} = 3\]

\[\text { Let }: \]

\[ dx = ∆ x = - 2\]

\[\text { Now }, y = \left( x \right)^\frac{1}{3} \]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{3 \left( x \right)^\frac{2}{3}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 27} = \frac{1}{27}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{27} \times \left( - 2 \right) = - 0 . 07407\]

\[ \Rightarrow ∆ y = - 0 . 07407\]

\[ \therefore \left( 25 \right)^\frac{1}{3} = y + ∆ y = 2 . 9259\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.25 | Page 9

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


If loge 4 = 1.3868, then loge 4.01 =


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of (4.01)3 


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×