English

Using Differential, Find the Approximate Value of the Loge 10.02, It Being Given that Loge10 = 2.3026 . - Mathematics

Advertisements
Advertisements

Question

Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?

Sum

Solution

\[\text { Consider the function } y = f\left( x \right) = \log_e x . \]

\[\text { Let }: \]

\[ x = 10 \]

\[ x + ∆ x = 10 . 02\]

\[\text { Then }, \]

\[ ∆ x = 0 . 02\]

\[\text { For }x = , \]

\[ y = \log_e 10 = 2 . 3026\]

\[\text { Let }: \]

\[ dx = ∆ x = 0 . 02\]

\[\text { Now }, y = \log_e x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 10} = \frac{1}{10}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{10} \times 0 . 02 = 0 . 002\]

\[ \Rightarrow ∆ y = 0 . 002\]

\[ \therefore \log_e 10 . 02 = y + ∆ y = 2 . 3046\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.09 | Page 9

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The approximate value of (33)1/5 is


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : e2.1, given that e2 = 7.389


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Using differentials, find the approximate value of `sqrt(0.082)`


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×