Advertisements
Advertisements
Question
Using differentials, find the approximate value of `sqrt(0.082)`
Solution
Let f(x) = `sqrt(x)`
Using f(x + ∆x) = f(x) + ∆x . f′(x), taking x = 0.09 and ∆x = – 0.008,
We get f(0.09 – 0.008) = f(0.09) + (– 0.008) f′(0.09)
⇒ `sqrt(0.082) = sqrt(0.09) - 0.008 . (1/(2sqrt(0.09)))`
= `0.3 - (0.008)/0.6`
= 0.3 – 0.0133
= 0.2867.
APPEARS IN
RELATED QUESTIONS
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : (3.97)4
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area