Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
उत्तर
\[\text { Consider the function }y = f\left( x \right) = \left( x \right)^\frac{1}{3} . \]
\[\text {Let }: \]
\[ x = 27\]
\[ x + ∆ x = 25\]
\[\text { Then,} \]
\[ \bigtriangleup x = - 2\]
\[\text { For } x = 27, \]
\[ y = \left( 27 \right)^\frac{1}{3} = 3\]
\[\text { Let }: \]
\[ dx = ∆ x = - 2\]
\[\text { Now }, y = \left( x \right)^\frac{1}{3} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{3 \left( x \right)^\frac{2}{3}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 27} = \frac{1}{27}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{27} \times \left( - 2 \right) = - 0 . 07407\]
\[ \Rightarrow ∆ y = - 0 . 07407\]
\[ \therefore \left( 25 \right)^\frac{1}{3} = y + ∆ y = 2 . 9259\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan–1(0.999)
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively