मराठी

The Pressure P and the Volume V of a Gas Are Connected by the Relation Pv1.4 = Const. Find the Percentage Error in P Corresponding to a Decrease of 1/2% in V? - Mathematics

Advertisements
Advertisements

प्रश्न

The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .

बेरीज

उत्तर

\[\text { We have }\]

\[p v^{1 . 4} = \text { constant} = k \left( \text { say } \right)\]

\[\text { Taking log on both the sides, we get }\]

\[\log \left( p v^{1 . 4} \right) = \log k\]

\[ \Rightarrow \log p + 1 . 4 \log v = \log k\]

\[\text { Differentiating both the sides w . r . t . x, we get }\]

\[\frac{1}{p}\frac{dp}{dv} + \frac{1 . 4}{v} = 0\]

\[ \Rightarrow \frac{dp}{p} = \frac{- 1 . 4 dv}{v}\]

\[\text { Now, dp } = \frac{dp}{dv}dv = \frac{- 1 . 4p}{v}dv\]

\[ \Rightarrow \frac{dp}{p} \times 100 = - 1 . 4\left( \frac{dv}{v} \times 100 \right) = - 1 . 4 \times \left( \frac{- 1}{2} \right) = 0 . 7 \left[ \text { Since we are given} \frac{1}{2} \% \text { decrease in} v \right]\]

\[\text { Hence, the error in p is } 0 . 7 \% .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 6 | पृष्ठ ९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If loge 4 = 1.3868, then loge 4.01 =


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : (3.97)4 


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Using differentials, find the approximate value of `sqrt(0.082)`


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×