Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
उत्तर
\[\text { Consider the function y } = f\left( x \right) = \sqrt{x .}\]
\[\text { Let }: \]
\[ x = 0 . 49 \]
\[x + ∆ x = 0 . 48\]
\[\text { Then }, \]
\[ ∆ x = - 0 . 01\]
\[\text { For }x = 0 . 49, \]
\[ y = \sqrt{0 . 49} = 0 . 7\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 01\]
\[\text { Now,} y = \left( x \right)^\frac{1}{2} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 0 . 49} = \frac{1}{1 . 4}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{1 . 4} \times \left( - 0 . 01 \right) = - 0 . 007143\]
\[ \Rightarrow ∆ y = - 0 . 007143\]
\[ \therefore \sqrt{0 . 48} = y + ∆ y = 0 . 693\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If y = xn then the ratio of relative errors in y and x is
Find the approximate values of : `root(3)(28)`
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
Find the approximate value of (1.999)5.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is