मराठी

Using Differentials, Find the Approximate Value of the Following up to 3 Places of Decimal `(32.15)^(1/5)` - Mathematics

Advertisements
Advertisements

प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`

उत्तर

`(32.15)^(1/5)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.4 [पृष्ठ २१६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.4 | Q 1.15 | पृष्ठ २१६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


If loge 4 = 1.3868, then loge 4.01 =


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


The approximate value of (33)1/5 is


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of (4.01)3 


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : e2.1, given that e2 = 7.389


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×