मराठी

The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is - Mathematics

Advertisements
Advertisements

प्रश्न

The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is

पर्याय

  • α %

  • 2α %

  • 3α %

  • none of these

MCQ

उत्तर

(c) 3 \[\alpha\] %

Let x be the radius, which is equal to the height of the cylinder. Let y be its volume.

\[\frac{∆ x}{x} \times 100 = \alpha\]

\[\text { Also }, y = \pi x^2 x = \pi x^3 \left[ \text{ Radius = Height of the cylinder }\right]\]

\[ \Rightarrow \frac{dy}{dx} = 3\pi x^2 \]

\[ \Rightarrow \frac{∆ y}{y} = \frac{3\pi x^2}{y}dx = \frac{3}{x} \times \frac{\alpha x}{100}\]

\[ \Rightarrow \frac{∆ y}{y} \times 100 = 3\alpha\]

\[\text { Hence, the error in the volume of the cylinder is } 3\alpha .\]%

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Differentials, Errors and Approximations - Exercise 14.3 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 14 Differentials, Errors and Approximations
Exercise 14.3 | Q 4 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : e2.1, given that e2 = 7.389


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×