मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the approximate value of cos (60° 30'). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)

उत्तर

Let `f(X)=cosx`

`f'(x)=-sinx`

`x=60^@30'=60^@+(1/2)^@=a+h`

Here, `a=60^@=pi/3`

and `h=(1/2)^@=(0.0175)/2=0.00875`

`f(a)=f(pi/3)=cos(pi/3)=1/2=0.5`

`f'(a)=f'(pi/3)=-sin(pi/3)=-0.8660`

`f(a+h)~~f(a)+hf'(a)`

`cos(60^@30')~~0.5+(0.00875)(-0.8660)`

`~~0.5-0.0075775`

`~~0.4924`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (July)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Using differentials, find the approximate value of each of the following.

`(17/81)^(1/4)`

 


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If loge 4 = 1.3868, then loge 4.01 =


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×