Advertisements
Advertisements
प्रश्न
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
उत्तर
\[\text { Let }: \]
\[ y = f\left( x \right) = \log_{10} x\]
\[\text { Here }, \]
\[x = 1000, \]
\[x + ∆ x = 1005\]
\[ \Rightarrow ∆ x = 5\]
\[ \Rightarrow dx = ∆ x = 5\]
\[\text{ For } x = 1000, \]
\[y = \log_{10} 1000 = \log_{10} \left( 10 \right)^3 = 3\]
\[\text { Now }, y = \log_{10} x = \frac{\log_e x}{\log_e 10}\]
\[ \therefore \frac{dy}{dx} = \frac{0 . 4343}{x}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 1000} = \frac{0 . 4343}{1000} = 0 . 0004343\]
\[ ∆ y = dy = \frac{dy}{dx}dx = 0 . 0004343 \times 5 = 0 . 0021715\]
\[ \therefore \log_{10} 1005 = y + ∆ y = 3 . 0021715\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
The approximate value of (33)1/5 is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1 (1.001)
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]