Advertisements
Advertisements
प्रश्न
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
उत्तर
\[\text { Let }: \]
\[ y = f\left( x \right) = \log_{10} x\]
\[\text { Here }, \]
\[x = 1000, \]
\[x + ∆ x = 1005\]
\[ \Rightarrow ∆ x = 5\]
\[ \Rightarrow dx = ∆ x = 5\]
\[\text{ For } x = 1000, \]
\[y = \log_{10} 1000 = \log_{10} \left( 10 \right)^3 = 3\]
\[\text { Now }, y = \log_{10} x = \frac{\log_e x}{\log_e 10}\]
\[ \therefore \frac{dy}{dx} = \frac{0 . 4343}{x}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 1000} = \frac{0 . 4343}{1000} = 0 . 0004343\]
\[ ∆ y = dy = \frac{dy}{dx}dx = 0 . 0004343 \times 5 = 0 . 0021715\]
\[ \therefore \log_{10} 1005 = y + ∆ y = 3 . 0021715\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : `root(3)(28)`
Find the approximate values of : (3.97)4
Find the approximate values of (4.01)3
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : e2.1, given that e2 = 7.389
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentials, find the approximate value of `sqrt(0.082)`
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is