Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
उत्तर
\[\text { Consider the function y } = f\left( x \right) = \left( x \right)^\frac{1}{5} . \]
\[\text { Let }: \]
\[ x = 32 \]
\[x + ∆ x = 33\]
\[\text{Then }, \]
\[ ∆ x = 1\]
\[\text { For } x = 33, \]
\[ y = \left( 32 \right)^\frac{1}{5} = 2\]
\[\text { Let }: \]
\[ dx = ∆ x = 1\]
\[\text { Now }, y = \left( x \right)^\frac{1}{5} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{5 \left( x \right)^\frac{4}{5}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 32} = \frac{1}{80}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{80} \times 1 = 0 . 0125\]
\[ \Rightarrow ∆ y = 0 . 0125\]
\[ \therefore \left( 33 \right)^\frac{1}{5} = y + ∆ y = 2 . 0125\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
If y = xn then the ratio of relative errors in y and x is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : (3.97)4
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : e2.1, given that e2 = 7.389
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is