Advertisements
Advertisements
प्रश्न
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
उत्तर
Let V be the volume of the sphere.
\[V = \frac{4}{3}\pi x^3 \]
\[\text { We have }\]
\[ \frac{∆ x}{x} \times 100 = \alpha\]
\[ \Rightarrow \frac{dV}{dx} = 4\pi x^2 \]
\[ \Rightarrow \frac{dV}{V} = \frac{4\pi x^2}{V}dx\]
\[ \Rightarrow \frac{∆ V}{V} = \frac{4\pi x^2}{\frac{4}{3}\pi x^3} \times \frac{x\alpha}{100}\]
\[ \Rightarrow \frac{∆ V}{V} \times 100 = 3\alpha\]
\[\text { Hence, the the percentage error in the volume is } 3\alpha . \]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If loge 4 = 1.3868, then loge 4.01 =
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
If y = xn then the ratio of relative errors in y and x is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.