हिंदी

Using Differential, Find the Approximate Value of the ( 1 . 999 ) 5 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?

योग

उत्तर

\[\text { Consider the function } y = f\left( x \right) = x^5 . \]

\[\text { Let }: \]

\[ x = 2 \]

\[ x + ∆ x = 1 . 999\]

\[\text { Then }, \]

\[ ∆ x = - 0 . 001\]

\[\text { For } x = 2, \]

\[ y = 2^5 = 32\]

\[\text { Let }: \]

\[ dx = ∆ x = - 0 . 001\]

\[\text { Now }, y = x^5 \]

\[ \Rightarrow \frac{dy}{dx} = 5 x^4 \]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 2} = 80\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = 80 \times \left( - 0 . 001 \right) = - 0 . 08\]

\[ \Rightarrow ∆ y = - 0 . 08\]

\[ \therefore 1 . {999}^5 = y + ∆ y = 31 . 92\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.28 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of (4.01)3 


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate value of (1.999)5.


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×