हिंदी

Using Differential, Find the Approximate Value of the Following: ( 0 . 009 ) 1 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]

योग

उत्तर

\[\text { Consider the function } y = f\left( x \right) = \sqrt[3]{x} . \]

\[\text { Let }: \]

\[ x = 0 . 008\]

\[x + ∆ x = 0 . 009\]

\[\text { Then }, ∆ x = 0 . 001\]

\[\text { For } x = 0 . 008, \]

\[ y = \sqrt{0 . 008} = 0 . 2\]

\[\text { Let }: \]

\[ dx = ∆ x = 0 . 001\]

\[\text { Now,} y = \sqrt[3]{x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{3 \left( x \right)^\frac{2}{3}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 0 . 008} = \frac{1}{3 \times 0 . 04} = \frac{1}{0 . 12}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{0 . 12} \times 0 . 001 = \frac{1}{120}\]

\[ \Rightarrow ∆ y = \frac{1}{120} = 0 . 008333\]

\[ \therefore \left( 0 . 009 \right)^\frac{1}{3} = y + ∆ y = 0 . 208333\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.02 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of (4.01)3 


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Find the approximate value of (1.999)5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×