Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
उत्तर
\[\text { Consider the function } y = f\left( x \right) = \sqrt[3]{x} . \]
\[\text { Let }: \]
\[ x = 0 . 008\]
\[x + ∆ x = 0 . 009\]
\[\text { Then }, ∆ x = 0 . 001\]
\[\text { For } x = 0 . 008, \]
\[ y = \sqrt{0 . 008} = 0 . 2\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 001\]
\[\text { Now,} y = \sqrt[3]{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{3 \left( x \right)^\frac{2}{3}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 0 . 008} = \frac{1}{3 \times 0 . 04} = \frac{1}{0 . 12}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{0 . 12} \times 0 . 001 = \frac{1}{120}\]
\[ \Rightarrow ∆ y = \frac{1}{120} = 0 . 008333\]
\[ \therefore \left( 0 . 009 \right)^\frac{1}{3} = y + ∆ y = 0 . 208333\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of (4.01)3
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan–1(0.999)
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Find the approximate value of (1.999)5.