हिंदी

Find the approximate values of : 31.985 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the approximate values of : `root(5)(31.98)`

योग

उत्तर

Let f(x) = `root(5)(x)`

Then f'(x) = `d/dx(x^(1/5))`

= `(1)/(5)x^(-4/5)`

= `(1)/(5x^(4/5)`

Take a = 2 and h = – 0.02.

Then f(a) = f(32) = `root(5)(32)` = 2

f'(a) = f'(32) = `(1)/(5(32)^(4/5)`

= `(1)/(5 xx 16)`

= `(1)/(80)`

= 0.0125
The formula for approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ `root(5)(31.98)`
= f(31.98)
= f(32 – 0.02)
≑ f(32 – 0.02.f'(32)
≑ 2 – 0.02 x  0.0125
≑ 2 – 0.000250
= 1.99975
∴ `root(5)(31.98)` ≑ 1.99975.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Exercise 2.2 [पृष्ठ ७५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Exercise 2.2 | Q 1.3 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the approximate value of ` sqrt8.95 `


Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If loge 4 = 1.3868, then loge 4.01 =


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of : `root(3)(28)`


Find the approximate values of : (3.97)4 


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Find the approximate value of (1.999)5.


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×