हिंदी

Using Differential, Find the Approximate Value of the Loge 4.04, It Being Given that Log104 = 0.6021 and Log10e = 0.4343 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?

योग

उत्तर

\[\text{ Consider the function } y = f\left( x \right) = \log_e x . \]

\[\text { Let }: \]

\[ x = 4 \]

\[x + ∆ x = 4 . 04\]

\[\text { Then }, \]

\[ ∆ x = 0 . 04\]

\[\text { For } x = 4, \]

\[y = \log_e 4 = \frac{\log_{10} 4}{\log_{10} e} = \frac{0 . 6021}{0 . 4343} = 1 . 386368\]

\[\text { Let }: \]

\[ dx = ∆ x = 0 . 04\]

\[\text { Now }, y = \log_e x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 4} = \frac{1}{4}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{4} \times 0 . 04 = 0 . 01\]

\[ \Rightarrow ∆ y = 0 . 01\]

\[ \therefore \log_e 4 . 04 = y + ∆ y = 1 . 396368\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.08 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If y = xn  then the ratio of relative errors in y and x is


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : tan–1(0.999)


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : tan–1 (1.001)


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×