Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
उत्तर
\[\text { Consider the function } y = f\left( x \right) = \left( x \right)^\frac{3}{2} . \]
\[\text { Let }: \]
\[ x = 4 \]
\[ x + ∆ x = 3 . 968\]
\[\text { Then }, \]
\[ ∆ x = - 0 . 032\]
\[\text { For } x = 4, \]
\[ y = \left( 4 \right)^\frac{3}{2} = 8\]
\[\text { Let }: \]
\[ dx = ∆ x = - 0 . 032\]
\[\text { Now }, y = \left( x \right)^\frac{3}{2} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{3\sqrt{x}}{2}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 4} = 3\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = 3 \times \left( - 0 . 032 \right) = - 0 . 096\]
\[ \Rightarrow ∆ y = - 0 . 096\]
\[ \therefore \left( 3 . 968 \right)^\frac{3}{2} = y + ∆ y = 7 . 904\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
Find the approximate values of : `root(3)(28)`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
Find the approximate value of (1.999)5.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866