Advertisements
Advertisements
प्रश्न
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
विकल्प
k%
3k%
2k%
k/3%
उत्तर
3k%
Let x be the radius of the sphere and y be its volume.
Then,
\[\frac{∆ x}{x} \times 100 = k\]
\[\text { Also }, y = \frac{4}{3}\pi x^3 \]
\[ \Rightarrow \frac{dy}{dx} = 4\pi x^2 \]
\[ \Rightarrow \frac{∆ y}{y} = \frac{4\pi x^2}{y}dx = \frac{4\pi x^2}{\frac{4}{3}\pi x^3} \times \frac{kx}{100}\]
\[ \Rightarrow \frac{∆ y}{y} \times 100 = 3k\]
\[\text { Hence, the error in the volume is } 3k .\] %
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
The approximate value of (33)1/5 is
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : (3.97)4
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e2.1, given that e2 = 7.389
Find the approximate values of : 32.01, given that log 3 = 1.0986
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]