Advertisements
Advertisements
प्रश्न
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
उत्तर
Let x be the radius of the sphere and y be its volume.
\[\text { Let } ∆ x \text { be the error in the radius and ∆ V be the approximate error in the volume } . \]
\[y = \frac{4}{3}\pi x^3 \]
\[ \Rightarrow \frac{dy}{dx} = 4\pi x^2 \]
\[ \Rightarrow ∆ y = dy = \frac{dy}{dx}dx = 4\pi x^2 \times ∆ x\]
\[ \Rightarrow ∆ y = 3 \times \frac{4}{3}\pi x^3 \times \frac{∆ x}{x}\]
\[ \Rightarrow ∆ y = 3 \times y \times \frac{∆ x}{x}\]
\[ \Rightarrow \frac{∆ y}{y} = 3\frac{∆ x}{x}\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
If y = xn then the ratio of relative errors in y and x is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `root(3)(28)`
Find the approximate values of : (3.97)4
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e2.1, given that e2 = 7.389
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is