Advertisements
Advertisements
प्रश्न
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
उत्तर
Let x be the radius of the sphere and y be its volume.
\[\text { Let } ∆ x \text { be the error in the radius and ∆ V be the approximate error in the volume } . \]
\[y = \frac{4}{3}\pi x^3 \]
\[ \Rightarrow \frac{dy}{dx} = 4\pi x^2 \]
\[ \Rightarrow ∆ y = dy = \frac{dy}{dx}dx = 4\pi x^2 \times ∆ x\]
\[ \Rightarrow ∆ y = 3 \times \frac{4}{3}\pi x^3 \times \frac{∆ x}{x}\]
\[ \Rightarrow ∆ y = 3 \times y \times \frac{∆ x}{x}\]
\[ \Rightarrow \frac{∆ y}{y} = 3\frac{∆ x}{x}\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area