Advertisements
Advertisements
प्रश्न
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
उत्तर
Let x be the radius and y be the area of the circular plane.
\[\text { We have } \frac{\bigtriangleup x}{x} = \alpha \text { and } y = x^2 . \]
\[ \Rightarrow \frac{dy}{dx} = 2x\]
\[ \Rightarrow \frac{\bigtriangleup y}{y} = \frac{2x}{y}dx = \frac{2x}{x^2} \times \alpha x = 2\alpha\]
\[\text { Hence, the relative error in the area of the circular plane is } 2\alpha .\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : `root(3)(28)`
Find the approximate values of : (3.97)4
Find the approximate values of (4.01)3
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : loge(101), given that loge10 = 2.3026.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Find the approximate value of (1.999)5.
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is