Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
उत्तर
\[\text { Consider the function } y = f\left( x \right) = \cos x . \]
\[\text { Let }: \]
\[ x = \frac{\pi}{3} \]
\[x + ∆ x = \frac{11\pi}{36}\]
\[\text { Then,} \]
\[ ∆ x = \frac{- \pi}{36} = - 5^\circ\]
\[\text { For } x = \frac{\pi}{3}, \]
\[y = \cos \left( \frac{\pi}{3} \right) = 0 . 5\]
\[\text { Let }: \]
\[ dx = ∆ x = - \sin 5^\circ = - 0 . 08716\]
\[\text { Now,} y = \cos x\]
\[ \Rightarrow \frac{dy}{dx} = - \sin x\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{3}} = - 0 . 86603\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = - 0 . 86603 \times \left( - 0 . 08716 \right) = 0 . 075575\]
\[ \Rightarrow ∆ y = 0 . 075575\]
\[ \therefore \cos\frac{11\pi}{36} = y + ∆ y = 0 . 5 + 0 . 075575 = 0 . 575575\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
The approximate value of (33)1/5 is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(3)(28)`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Using differentials, find the approximate value of `sqrt(0.082)`
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866