Advertisements
Advertisements
प्रश्न
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
उत्तर
Let x = 2 and Δx = 0.01. Then, we have:
f(2.01) = f(x + Δx) = 4(x + Δx)2 + 5(x + Δx) + 2
Now, Δy = f(x + Δx) − f(x)
∴ f(x + Δx) = f(x) + Δy
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
If loge 4 = 1.3868, then loge 4.01 =
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
If y = xn then the ratio of relative errors in y and x is
Find the approximate values of : (3.97)4
Find the approximate values of : tan–1(0.999)
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : 32.01, given that log 3 = 1.0986
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Using differentials, find the approximate value of `sqrt(0.082)`
Find the approximate value of (1.999)5.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]