English

Find the Approximate Value of F (2.01), Where F (X) = 4x2 + 5x + 2 - Mathematics

Advertisements
Advertisements

Question

Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2

Solution

Let x = 2 and Δx = 0.01. Then, we have:

f(2.01) = f(+ Δx) = 4(x + Δx)2 + 5(x + Δx) + 2

Now, Δy = f(x + Δx) − f(x)

∴ f(x + Δx) = f(x) + Δy

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.4 [Page 216]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.4 | Q 2 | Page 216

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


Find the approximate values of : `root(3)(28)`


Find the approximate values of : (3.97)4 


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : 32.01, given that log 3 = 1.0986


Using differentials, find the approximate value of `sqrt(0.082)`


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×