Advertisements
Advertisements
Question
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
Solution
Let at any time, x be the radius and y be the area of the plate.
\[\text { Then,} \]
\[ y = x^2 \]
\[\text { Let ∆ x be the change in the radius and }\bigtriangleup y \text { be the change in the area of the plate }. \]
\[\text { We have }\]
\[\frac{∆ x}{x} \times 100 = k\]
\[\text { When }x = 10,\text { we get }\]
\[ ∆ x = \frac{10k}{100} = \frac{k}{10}\]
\[\text { Now,} y = \pi x^2 \]
\[ \Rightarrow \frac{dy}{dx} = 2\pi x\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 10 cm} = 20\pi {cm}^2 /cm\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = 20\pi \times \frac{k}{10} = 2k\pi \ {cm}^2 \]
Hence, the approximate change in the area of the plate is 2k
\[\pi\] cm2 .
APPEARS IN
RELATED QUESTIONS
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
If y = xn then the ratio of relative errors in y and x is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : e2.1, given that e2 = 7.389
Find the approximate values of : 32.01, given that log 3 = 1.0986
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]