Advertisements
Advertisements
प्रश्न
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
उत्तर
Let f(x) = tan x
Then f'(x) = `d/dx(tanx) = sec^2x`
Take a = 45°
= `pi/(4)`
and
h = 40'
= `(40/60 xx 0.0175)^c`
= 0.01167c
Then f(a) = `f(pi/4)`
= `tan pi/(4)`
= 1
and
f'(a) = `f'(pi/4)`
= `sec^2 pi/(4)`
= `(sqrt(2))^2`
= 2
The formula for approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ tan(45° 40')
= f(45° 40')
= `f(pi/4 + 0.01167)`
≑ `f(pi/4) + (0.01167).f'(pi/4)`
≑ 1 + 0.01167 x 2
= 1 + 0.02334
= 1.02334
∴ tan (45° 40') ≑ 1.02334.
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
If y = xn then the ratio of relative errors in y and x is
The approximate value of (33)1/5 is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : e2.1, given that e2 = 7.389
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Using differentials, find the approximate value of `sqrt(0.082)`
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]