Advertisements
Advertisements
Question
If y = sin–1x, then show that `(1 - x^2) (d^2y)/(dx^2) - x * dy/dx` = 0
Solution
y = sin–1x
Differentiating w.r.t. x,
`dy/dx = 1/sqrt(1 - x^2)`
∴ `sqrt(1 - x^2) * dy/dx` = 1
Squaring on both sides, we get
∴ `(1 - x^2) (dy/dx)^2 = 1`
Again differentiating w.r.t. x
`(1 - x^2)2 dy/dx * (d^2y)/(dx^2) + (dy/dx)^2 (-2x) = 0`
Dividing by `2 dy/dx`, we get
`(1 - x^2) (d^2y)/(dx^2) - x dy/dx = 0`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find `bb((d^2y)/(dx^2))` of the following:
x = 2at2, y = 4at
If y = `"e"^("m"tan^(-1)x`, show that `(1 + x^2) ("d"^2y)/("d"x^2) + (2x - "m")("d"y)/("d"x)` = 0
If y = cos(m cos–1x), then show that `(1 - x^2) ("d"^2y)/("d"x^2) - x("d"y)/("d"x) + "m"^2y` = 0
If x = e2y, then `("d"^2y)/"dx"^2*("d"^2x)/"dy"^2` is equal to
If x = a sin t - b cos t, y = a cos t+ b sin t, then `"y"^3 ("d"^2"y")/"dx"^2 + x^2 + y^2` = ?
If f(x) = log (sin x), x ∈ `[π/6, (5π)/6]`, then value of 'c' by applying LMVT is ____________.
lf f(x) = cos-1 `[(1 - (log x)^2)/(1 + (log x)^2)]`, then f' (e) = _______.
If x = sin θ, y = sin3 θ then `("d"^2"y")/"dx"^2 "at" theta = pi/2` is ______.
If for a function f(x), f'(a) = 0, f"(a) = 0, f"'(a) > 0, then at x = a, f(x) is ______
Let f(x) = tan-1x. Then f'(x) + f"(x) is equal to 0, when x is equal to ______
If y =sin (log x), then `x^2 ("d"^2"y")/"dx"^2 + x "dy"/"dx" + "y"` is equal to ______.
The differential equation representing the family of curves `y^2 = 2d(x + sqrtd)`, where d is a positive parameter, is of ______
If f(x) =logx (log x), then f'(x) at x = e is ______.
if y = axn+2 + bx-n-1, then `x^2(d^2y)/(dx^2)` is ______.
If y = `sqrt("e"^x + sqrt("e"^x + sqrt("e"^x + .... oo)`, then `("d"y)/("d"x)` is equal to ______.
`"d"^2/("d"x^2) (2 sin 3x cosx)` = ______.
If f'(x) = `2 - 5/x^4` and f(1) = `14/3`, then f(-1) = ______
If f(0) = 3, f'(0) = 2, then`"d"/("d"x) { log "f"(sin x + 3x^2)}` at x 0 is ______.
If y = `x^3 + 1/(x^3 + 1/(x^3 + 1/(x^3 + .....oo)`, ten `("d"y)/("d"x)` = ______.
Suppose f(x) = eax + ebx, where a ≠ b, and that f"(x) – 2f'(x) – 15f(x) = 0 for all x. Then the product ab is ______.
If x = a(cos t + t sin t) and y = a(sin t – t cos t), then `(d^2y)/(dx^2)` is ______.
If x = f(t) and y = g (t) are differentiable functions of t, then `(d^2y)/(dx^2)` is ______.
If x = cos θ and y = sin3θ, show that `y(d^2y)/(dx^2) + (dy/dx)^2` = 3sin2θ(5cos2θ – 1)