Advertisements
Advertisements
Question
Find `bb((d^2y)/(dx^2))` of the following:
x = 2at2, y = 4at
Solution
x = 2at2, y = 4at
Differentiating x and y w.r.t. t, we get
`dx/dt = d/dt(2at^2)`
= `2a*d/dt(t^2)`
= 2a × 2t
= 4at ...(1)
and `dy/dt = d/dt(4at)`
= `4a d/dt(t)`
= 4a × 1
= 4a
∴ `dy/dx = ((dy/dt))/((dx/dt)`
= `(4a)/(4at)`
= `1/t`
and `(d^2y)/(dx^2) = d/dx(1/t)`
= `d/dt(t^-1) xx dt/dx`
= `-1(t)^-2 xx 1/((dx/dt)`
= `-1/t^2 xx 1/(4at)` ...[By (1)]
= `-1/(4at^3)`
APPEARS IN
RELATED QUESTIONS
If y = `"e"^("m"tan^(-1)x`, show that `(1 + x^2) ("d"^2y)/("d"x^2) + (2x - "m")("d"y)/("d"x)` = 0
If y = cos(m cos–1x), then show that `(1 - x^2) ("d"^2y)/("d"x^2) - x("d"y)/("d"x) + "m"^2y` = 0
If x = e2y, then `("d"^2y)/"dx"^2*("d"^2x)/"dy"^2` is equal to
If f(x) = log (sin x), x ∈ `[π/6, (5π)/6]`, then value of 'c' by applying LMVT is ____________.
lf f(x) = cos-1 `[(1 - (log x)^2)/(1 + (log x)^2)]`, then f' (e) = _______.
If x = sin θ, y = sin3 θ then `("d"^2"y")/"dx"^2 "at" theta = pi/2` is ______.
If for a function f(x), f'(a) = 0, f"(a) = 0, f"'(a) > 0, then at x = a, f(x) is ______
Let f(x) = tan-1x. Then f'(x) + f"(x) is equal to 0, when x is equal to ______
If y =sin (log x), then `x^2 ("d"^2"y")/"dx"^2 + x "dy"/"dx" + "y"` is equal to ______.
The differential equation representing the family of curves `y^2 = 2d(x + sqrtd)`, where d is a positive parameter, is of ______
if y = axn+2 + bx-n-1, then `x^2(d^2y)/(dx^2)` is ______.
If y = `sqrt("e"^x + sqrt("e"^x + sqrt("e"^x + .... oo)`, then `("d"y)/("d"x)` is equal to ______.
`"d"^2/("d"x^2) (2 sin 3x cosx)` = ______.
If f'(x) = `2 - 5/x^4` and f(1) = `14/3`, then f(-1) = ______
If f(0) = 3, f'(0) = 2, then`"d"/("d"x) { log "f"(sin x + 3x^2)}` at x 0 is ______.
Suppose f(x) = eax + ebx, where a ≠ b, and that f"(x) – 2f'(x) – 15f(x) = 0 for all x. Then the product ab is ______.
If x = a(cos t + t sin t) and y = a(sin t – t cos t), then `(d^2y)/(dx^2)` is ______.
If y = sin–1x, then show that `(1 - x^2) (d^2y)/(dx^2) - x * dy/dx` = 0
If x = cos θ and y = sin3θ, show that `y(d^2y)/(dx^2) + (dy/dx)^2` = 3sin2θ(5cos2θ – 1)